
Reading From Alternate Sources:
What To Do When The Input Is Not a Flat File

Michael Davis, Ambler, PA

ABSTRACT

Most SAS programmers are comfortable creating
applications when the input is in a SAS data set or
flat file on the same computer. However, what do
you do when your data is to be accessed from a web
page or TCP socket? Can you read data on another
computer accessible via FTP without first
transporting the file? How do you read a SAS
catalog entry? What if the data is from a device
connected to your computer via an RS-232
interface? How about reading database files as if
they were SAS data sets.

This presentation will illustrate SAS software
features to handle these and other data input
situations. Special attention will be paid to new
features introduced with Versions 7 and 8 (and
available in V9), such as the SAS/ACCESS
LIBNAME engines.

FTP Access Method

Most persons who have been using SAS software for
an extended period are comfortable writing programs
that use flat files as input. But the level of comfort
often drops rapidly when the input source is not on
the local drives or mapped network drives.

Many of those computer users, especially those with
some familiarity with Unix operating systems, are
acquainted with FTP. FTP, which stands for File
Transfer Protocol, is a technique which allows for the
transfer of files to and from a remote network site.

Perhaps the most obvious technique would be to use
FTP to transfer the input file to a local drive or a
network drive mapped to the computer on which
SAS is installed. The drawback is that if the input file
is large, it can be inconvenient to park the file prior to
reading it.

SAS has the ability to define an FTP data source as
a fileref. This feature has been available since
Version 6. The FTP access method can be used to
define a fileref with any remote computer accessible
by TCP/IP

TCP/IP (Transport Control Protocol/Internet
Protocol) is often called TCP. TCP is a widely used

protocol, employed for both corporate network and
dial-up connections.

The general syntax for a FILENAME statement that
employs the FTP Access Method is:

FILENAME fileref FTP 'external-
file' <ftp-options> ;

Commonly used FTP options include:

cd= set current directory
debug show informational messages
host= set host name or IP address
pass= specify password
recfm= record format, f - fixed, v - variable
user= specify user id (account)

The debug option is very useful when setting up a
connection with a new FTP host. This option causes
all of the messages sent to and received from the
FTP to be shown in the SAS Log.

For a complete list of options that may be used with
the FTP Access Method, consult the SAS
OnlineDoc. Navigate to the relevant portion by
selecting -> Base SAS Software -> SAS Language
Reference: Dictionary -> Dictionary of Language
Elements -> Statements -> FILENAME, FTP Access
Method.

If you use SAS primarily under Microsoft Windows,
you may be thinking, “This is great but since my
company does not provide an FTP server, I have no
way to actually try out the FTP Access Method.”.
Well, if you have access to SAS Version 6 (e.g,
Release 6.12) or later and any form of Internet
connection (even a dial-up modem connection), you
should be able to run the following example.

The example employs a SAS data set of 1986 Major
League Baseball batter statistics, converted to a
comma-separated value (CSV) text file. The file is
hosted on an FTP server that can be accessed with
the following FILENAME statement.

filename myfile ftp 'baseball.csv'
 user= 'ftpdownload'
 pass= 'test123'
 host='bassettconsulting.com'
 recfm=v debug ;

2

The baseball.csv file is found in the anonymous
subdirectory on an FTP server referenced by the
internet domain bassettconsulting.com (current IP
address 209.35.121.141). Being a comma-
separated file, the length of each record varies,
hence the variable-length record format (recfm=v).
The debug parameter is optional. It is included in
this example for instructional purposes and is usually
omitted from production code.

A comma-separated value example is shown in part
because it allows for the columns names to be
passed within the file. Also, the SAS code to read
the file can be automatically generated by the Import
Wizard. The Import Wizard is available from the File
pmenu in SAS Release 6.12 and later versions. An
edited version of the code it generated is shown
below.

Although it is beyond the scope of this paper, the
FTP file access method can be used to create files
as well as read them. However, the anonymous FTP
access supplied in the example FILENAME
statement only allows read-access.

Fans of “big iron” might wonder at this point whether
the FTP Access Method is available to them. The
good news is that users of SAS on mainframes are
often able to use the FTP Access Method as well.
On the following page, an example is shown to
demonstrate the use of the FTP Access Method is
shown for an IBM z/OS (“mainframe”) computer.

data WORK.baseball ;
 infile myfile delimiter = ','
 MISSOVER DSD lrecl=32767
 firstobs=2 ;
 informat NAME $20. ;
 informat TEAM $12. ;
 informat NO_ATBAT best32. ;
 informat NO_HITS best32. ;
 informat NO_HOME best32. ;
 informat NO_RUNS best32. ;
 informat NO_RBI best32. ;
 informat NO_BB best32. ;
 informat YR_MAJOR best32. ;
 informat CR_ATBAT best32. ;
 informat CR_HITS best32. ;
 informat CR_HOME best32. ;
 informat CR_RUNS best32. ;
 informat CR_RBI best32. ;
 informat CR_BB best32. ;
 informat LEAGUE $8. ;
 informat DIVISION $4. ;
 informat POSITION $2. ;
 informat NO_OUTS best32. ;
 informat NO_ASSTS best32. ;
 informat NO_ERROR best32. ;
 informat SALARY best32. ;
 format NAME $20. ;
 format TEAM $12. ;
 format NO_ATBAT best12. ;
 format NO_HITS best12. ;
 format NO_HOME best12. ;
 format NO_RUNS best12. ;
 format NO_RBI best12. ;
 format NO_BB best12. ;
 format YR_MAJOR best12. ;
 format CR_ATBAT best12. ;
 format CR_HITS best12. ;
 format CR_HOME best12. ;
 format CR_RUNS best12. ;
 format CR_RBI best12. ;
 format CR_BB best12. ;
 format LEAGUE $8. ;

 informat DIVISION $4. ;
 informat POSITION $2. ;
 informat NO_OUTS best32. ;
 informat NO_ASSTS best32. ;
 informat NO_ERROR best32. ;
 informat SALARY best32. ;
 format NAME $20. ;
 format TEAM $12. ;
 format NO_ATBAT best12. ;
 format NO_HITS best12. ;
 format NO_HOME best12. ;
 format NO_RUNS best12. ;
 format NO_RBI best12. ;
 format NO_BB best12. ;
 format YR_MAJOR best12. ;
 format CR_ATBAT best12. ;
 format CR_HITS best12. ;
 format CR_HOME best12. ;
 format CR_RUNS best12. ;
 format CR_RBI best12. ;
 format CR_BB best12. ;
 format LEAGUE $8. ;
 format DIVISION $4. ;
 format POSITION $2. ;
 format NO_OUTS best12. ;
 format NO_ASSTS best12. ;
 format NO_ERROR best12. ;
 format SALARY best12. ;
 input
 NAME $ TEAM $ NO_ATBAT
 NO_HITS NO_HOME NO_RUNS
 NO_RBI NO_BB YR_MAJOR
 CR_ATBAT CR_HITS CR_HOME
 CR_RUNS CR_RBI CR_BB
 LEAGUE $ DIVISION $
 POSITION $ NO_OUTS NO_ASSTS
 NO_ERROR SALARY ;
 run;

3

In the mainframe FTP Access Method example
above, please notice the use of double quotes
enclosing the single quotes surrounding the data set
name. This is because with z/OS, if a data set name
is not quoted, the operating system will prefix the
data set name with the user account, which is not
desired.

The prompt option was used in this example so that
it was not necessary to embed the password in the
FILENAME statement. Also notice the use of the
rcmd= (remote command) option. The option
rcmd=’site rdw’ is required for IBM FTP servers. It
causes the record descriptor word to be included as
part of the data. The record descriptor word, which
is needed, would otherwise be removed.

Moving to the data step portion of the above sample,
please notice the use of the $ebcdic and s370fpd
informats. As those familiar with IBM mainframes
may know, characters in their files are encoded
using EBCDIC representation instead of ASCII. If
the information in mainframe files are being moved
using SAS/CONNECT or a terminal emulation
program, the translation from EBCDIC to ASCII
would probably be handled transparently.

However, when FTP is used to transport a file from a
mainframe to either a personal computer or a mid-
range Unix server, the EBCDIC character
representation remains. So instead of translating the

contents of the file character by character, we use
the $ebcdic and S370fpd informats.

In our mainframe FTP Access Method example, a
SAS supplied utility, COB2SAS (“COBOL to SAS”)
was used to convert the COBOL copybook
(sometimes known as an “RD” or “Record
Description”) into a SAS INPUT statement.
COB2SAS was employed primarily to automatically
calculate the input field offsets and informat widths.
The resulting INPUT statement was edited to
substitute $ebcdic informats for the COB2SAS-
generated character informats. The $ebcdic
translates the EBCDIC character data to ASCII.
Similarly, the numeric fields were converted into
s370fpd informat, which reads packed data in IBM
mainframe format

There are two other cautions to observe when using
the FTP Access Method with mainframe files. First,
this access method only works with disk files. Tape
data cannot be accessed via FTP. Second, at many
sites, mainframe disk files are periodically archived.
So before employing the FTP Access Method, it may
be necessary to issue an HRECALL or similar
command to cause an archived file to be restored to
disk.

URL Access Method

How often have you looked at a web page in a
browser and said to yourself, “I wish that I could use
that as input to a SAS program”. The need for this
service has grown with growth of Common Gateway
Interface (CGI) applications such as SAS/IntrNet.
CGI tools and other web technologies can serve as
an application program interface (API) for computer
programs to pass parameters to an application
server and return the results to a web browser
window.

The application server usually returns the results in
the form of a hypertext mark-up language (HTML)
table. For the results to be used as part of a
program to program interface, we need an
automated way to read the character stream
returned from the CGI or other web application.

Fortunately, the fine folks who brought us the FTP
Access Method have also have provided the URL
Access Method. URLs (Universal Resource
Locators) are the “http://…” strings that either you or
the previous web page types into the location box at
the top of a browser to show the desired web page.

Similar to the FTP Access Method, the URL Access
Method is defined through a FILENAME statement.

/* set the FTP fileref */

filename rsrawdat ftp
 "'<data set name>'"
 user='<user account>'
 host='<IP address>'
 prompt rcmd='site rdw' debug ;

/* read the FTP data */

data testraw ;
 infile rsrawdat lrecl=1080
 missover ;
 input
 @1 var1 $ebcdic2.
 @3 var2 s370fpd5.0
 @8 var3 s370fpd4.0
 @12 var4 $ebcdic5.
 @17 var5 $ebcdic21.
 @38 var6 $ebcdic8.
 @46 var7 $ebcdic4.
 <…more variables read…>
 ;
run ;

4

The syntax for the FILENAME statement employing
the URL Access Method is:

FILENAME fileref URL 'external-file'
<url-options>;

If you wish, the “URL” after the fileref can be
replaced with “HTTP”. The “external-file” is the URL
of the web page to be read. The format consists of

http://<hostname>/<filename>

plus any additional parameters which may follow
after a question mark (?) delimiter. If the port for the
HyperText Transfer Protocol Daemon (HTTPD)
needs to be specified, the “external-file” format
becomes:

http://<hostname>:<port>/<filename>

The most common HTTPD port is 80. We will return
to this subject at the end of URL Access Method
section.

The URL Access Method is often used without any
options. At some sites, the proxy= option may be
required to accommodate a proxy server. For a
complete list of options that may be used with the
URL Access Method, consult the SAS OnlineDoc.
Navigate to the relevant portion by selecting -> Base
SAS Software -> SAS Language Reference:
Dictionary -> Dictionary of Language Elements ->
Statements -> FILENAME, URL Access Method.

Unlike the FTP Access Method, the tricky part is not
making the connection but parsing the returned byte
stream and converting it into a SAS data set.
Fortunately, HTML pages contain tags, denoted by
the “<” and “>” characters. Scanning the URL byte
streams for selected tags, coupled with an
understanding of HTML tables and other formatting
techniques allow us to extract the desired
information as a SAS data set.

The heart of the typical page returned from a CGI
application, such as SAS/IntrNet, or from the SAS
web-formatting macros, or from the SAS Output
Delivery System (ODS) is an HTML table. Within an
HTML page, tables are enclosed between <TABLE>
and </TABLE> tags. Each row in a table is enclosed
by <TR> and </TR> tags. Within each row, each cell
is enclosed between <TD> and </TD> tags.

For the purpose of demonstrating the URL Access
Method, the author created an HTML page from the
baseball SAS data set used earlier in this paper. He
used ODS to create the HTML page. The page can
be viewed at the following URL:

http://bassettconsulting.com/baseball.htm

The page is 843 KB so it may take a few seconds to
view if the web browser connected to the Internet via
a dial-up connection.

While not a requirement of HTML, the output
generated by SAS ODS puts the <TD> and <TR>
tags at the start of a new line. The data and
formatting tags for each cell appears on a separate
line. As a final stroke of luck, all of the data cells,
and only the data cells are prefixed by a font tag
which ends with:

color="#000000"

One last detail that might be useful to some readers
is that all of the <TD> tags contain “ALIGN=LEFT”
when the cell contains character data and
“ALIGN=RIGHT” when the data is numeric. While
useful in some applications, this information was not
needed for the SAS coding shown subsequently.

One of the techniques that the author uses to “fine-
tune his programming approach is a “quick and dirty”
program such as the following example to generate
a data set to show the position of all the relevant
words.

Please note that the above Filename statement is
wrapped to the next line only to fit into the column.

In this example, the baseball.html file is opened as a
URL fileref. Input rows that do not begin with the
<TD> tag are immediately dropped. The resulting
SAS data set, testhtml, shows the contents of each
“word” identified by the Scan function. The Scan
function is using blanks, “<”, “>”, and double

filename readhtml url
'http://bassettconsulting.com/base
ball.htm' debug;

data testhtml(drop=buffer) ;
 length buffer $ 200 word $ 25 ;
 infile readhtml lrecl=200 pad ;
 input @1 buffer 200. ;
 if input(buffer,$3.) eq '<TD' ;
 word= scan(buffer, 1, ' <>"') ;
 if word eq 'TD' then
 do i = 1 to 20 ;
 word= scan(buffer, i,' <>"') ;
 output ;
 end ;
run ;

http://bassettconsulting.com/baseball.htm

5

quotation marks as the delimiter. The loop variable
“i” shows the position of each word.

The test program shows that for the rows that
contain data to be extracted, the word “#000000”,
which set the color of the displayed font to black, is
the thirteenth word extracted. The fourteenth word is
always the data to be extracted. However, in the
case of the player name, the fourteenth word is the
player’s last name, with a comma. The player’s first
name is the fifteenth word.

So the first part of our program to extract the table
values from the baseball.html page should be
revised as shown in the following version:

The resulting data set, testhtml, has 7084
observations, one observation for each of the 22
variables in the baseball data set. However, what we
really wanted was just one observation with 22
variables for each row of data shown in on the web
page. The following program transforms the testhtml
data into the desired format.

filename readhtml url
'http://bassettconsulting.com:80/bas
eball.htm' debug;

data testhtml(drop=buffer) ;
 length buffer $ 200
 word word2 $ 25 ;
 infile readhtml lrecl=200 pad ;
 input @1 buffer 200. ;
 if input(buffer,$3.) eq '<TD' ;
 do ;
 word= scan(buffer,13,' <>"') ;
 if word eq '#000000' then do ;
 word= scan(buffer,14,' <>"') ;
 word2=scan(buffer,15,' <>"') ;
 output ;
 end ;
 end ;
run ;

 retain
 name team no_atbat no_hits
 no_home no_runs no_rbi no_bb
 yr_major cr_atbat cr_hits
 cr_home cr_runs cr_rbi
 cr_bb league division
 position no_outs no_assts
 no_error salary ;
 retain count 0 ;
 format salary 8.2 ;
 set testhtml ;
 if count eq 0 then name =
 trim(word) || ' ' || word2 ;
 else if count eq 1 then
 team = word ;
 else if count eq 2 then
 no_atbat = input(word, 8.) ;
 else if count eq 3 then
 no_hits = input(word, 8.) ;
 else if count eq 4 then
 no_home = input(word, 8.) ;
 else if count eq 5 then
 no_runs = input(word, 8.) ;
 else if count eq 6 then
 no_rbi = input(word, 8.) ;
 else if count eq 7 then
 no_bb = input(word, 8.) ;
 else if count eq 8 then
 yr_major = input(word, 8.) ;
 else if count eq 9 then
 cr_atbat = input(word, 8.) ;
 else if count eq 10 then
 cr_hits = input(word, 8.) ;
 else if count eq 11 then
 cr_home = input(word, 8.) ;
 else if count eq 12 then
 cr_runs = input(word, 8.) ;
 else if count eq 13 then
 cr_rbi = input(word, 8.) ;
 else if count eq 14 then
 cr_bb = input(word, 8.) ;
 else if count eq 15 then
 league = word ;
 else if count eq 16 then
 division = word ;
 else if count eq 17 then
 position = word ;
 else if count eq 18 then
 no_outs = input(word, 8.) ;
 else if count eq 19 then
 no_assts = input(word, 8.) ;
 else if count eq 20 then
 no_error = input(word, 8.) ;
 else if count eq 21 then
 salary = input(word, 8.2) ;
 count+1 ;
 if count ge 22 then do ;
 count= 0 ; output ;
 end ;
run ;

data testhtml2(drop=word word2 count)
;
 length
 name $ 18
 team $ 12
 no_atbat no_hits no_home
 no_runs no_rbi no_bb yr_major
 cr_atbat cr_hits cr_home
 cr_runs cr_rbi cr_bb 8
 league division position $ 8
 no_outs no_assts no_error
 salary 8 ;

6

The preceding code was customized for the baseball
data set and would have to be adapted for different
web pages. If the web page had been produced by a
different technique, different “landmarks” may be
required. However, the general approach described
can be used to extract tables from other web pages.

When testing the code when this paper was created,
the author received the error message that indicated
that the httpd service (daemon) was not available. A
search of the SAS Technical Support web site
identified note V6-SYS.SYS-C065, which also
applied to Version 8. Adding the line:

httpd 80/tcp #world wide web access

to the computer’s services file solved the problem.
An alternative would have been to append the port
number (:80) the domain in the URL supplied in the
FILENAME statement. The example furnished on
the previous page shows this technique.

One last caveat about the URL Access Method is
that in contrast with the FTP Access Method, the
URL Access Method only allows one to read web
data. For those who have a requirement to use SAS
to update the content of a website, many situations
can be handled by using the FTP Access Method to
transfer SAS created output to the web host.

For those whose requirements cannot be met by the
FTP and URL Access Methods, another way to
communicate with web hosts follows.

Socket Access Method

At Northeast SAS Users Conference held in
Philadelphia in 2000, David Ward presented a
wonderful paper on using the Socket Access
Method, which is cited in the bibliography. Those
who are interested in experimenting with and
perhaps using the Socket Access Method are
commended to seek a copy of David’s paper, along
with consulting the the SAS OnlineDoc.

The portion of the SAS OnlineDoc relevant to the
Socket Access Method can be found by selecting ->
Base SAS Software -> SAS Language Reference:
Dictionary -> Dictionary of Language Elements ->
Statements -> FILENAME, SOCKET Access
Method.

The syntax for using the Socket Access Method in a
client (reading data) mode is:

FILENAME fileref SOCKET 'hostname:portno'
<tcpip-options>;

As a subsequent example will demonstrate, it is
often not necessary to supply the hostname
parameter.

Where does this method fit into our toolbox? The
URL Access Method is probably simpler to
implement. If one merely needs to use a returned
web page as program input, then it probably is a
good idea to start with this method.

However, if you need to use the communication
between a browser or similar web client with a web
host, the Socket Access Method is probably the tool
to get this done. For example, the Socket Access
Method will show the cookie(s) exchanged between
a client browser and web host. You can also read
the HTTP (Hypertext Transfer Protocol) headers
using the Socket Access Method.

The following sample illustrates how a socket is
referenced through a filename. The port reference
“:80” is the port used by web browsers

Notice in the above code that the hostname was not
specified. In this example, the host would default to
localhost.

When the above example and a related DATA step
were issued in an earlier version of both Windows
and SAS, one could monitor the URL requests made
through a web browser via the SAS Log.
Unfortunately, with the current versions of SAS and
Windows, this example no longer works due to
security features. However, the Socket Access
Method is still available in SAS and could be a useful
tool in the hands of sophisticated programmers.

CATALOG Access Method

By way of background, a catalog is a special type of
file that allows SAS to store different types of
information in partitions called catalog entries. Each
entry type identifies the purpose of the entry to the
SAS system.

Many, if not most, SAS users would find it relatively
easy to write a program to read a straight-forward flat
text file as program input. However, were one to
take the contents of that file and convert it to a SAS
catalog source entry, some of those users might
hesitate or not be able to complete the task.

However, the principles behind reading a SAS
catalog entry are not very different from those

filename web socket ':80' server
termstr=CRLF ;

7

employed in reading flat text files. The Catalog
Access Method allows one to read log, output,
source and catams SAS catalog entries.

The syntax for the Catalog Access Method is:

FILENAME fileref CATALOG 'catalog' <catalog-
options>;

The portion of the SAS OnlineDoc relevant to the
Catalog Access Method can be found by selecting ->
Base SAS Software -> SAS Language Reference:
Dictionary -> Dictionary of Language Elements ->
Statements -> FILENAME, CATALOG Access
Method.

While in some applications, the “catalog” portion of
the FILENAME statement can be shortened to the
essential three or two parts, in most situations, it is
usually a good idea to specify all four parts. Those
four parts would be:

library.catalog.entry.type

While the focus of this paper is how to read data into
SAS programs, perhaps the easiest way to illustrate
how the Catalog Access Method works is to submit
the following program within a SAS session.

The FILENAME statement in the program shown in
the next column creates the source catalog entry
dummydat in the mycat catalog in the work library.

The DATA _null_ step that follows the FILENAME
statement writes a character string to the dummycat
fileref. The fileref was opened by the preceding
FILENAME statement employing the Catalog Access
Method.

The following DATA step creates the SAS data set
stuff which reads the source catalog entry created
and written by the DATA _null_ step. The final
PRINT procedure shows that the preceding steps
worked as designed.

One might ask, “Why would anyone want to read
from a SAS catalog? Would it not be more straight-
forward to write and read flat text files?”. The first
part of the answer would have to be that if one is
given data in the form of a SAS catalog, then one
has to employ SAS to read the contents into SAS
data sets.

But to really answer the question, one ought to ask
the additional question, “Why would anyone want to
write to a SAS catalog in the first place?”. Three
reasons could be advanced.

First, some advanced features of SAS software
expect, if not require, the use of SAS catalogs to
contain program input and output. Second, using
catalogs can help make program cross-platform
portable. One does not have to worry about which
direction the slashes slant, the nature of the directory
structure, and the other nuances that differ among
operating systems.

However the author’s favorite reason to employ SAS
catalogs in applications as program input and output
is that if you write scratch information to the work
libref, the scratch area is automatically deleted at the
end of the SAS session.

Reading Data Using Named Pipes

Until the author started researching this paper, he
had assumed that the ability to use pipes was
restricted to the Unix platforms. Much to his
surprise, he recently discovered that named pipes
may be used under Microsoft Windows NT and
Windows 2000 (and now Windows XP).

Named pipes are a technique to allow bi-directional
exchange of data among applications. The
applications can be on the same computer or among
computers connected via a network. Named pipes
are documented in SAS OnlineDoc. Look in the SAS
Companion for the Windows Environment, “Part 2,
Using SAS with Other Windows Applications, Using
Unnamed and Named Pipes”.
The syntax for a Filename statement to set up a
named pipe is:

FILENAME fileref NAMEPIPE 'pipe-specification'
<named-pipe-options>;

filename dummycat catalog
'work.mycat.dummydat.source' ;

data _null_ ;
 file dummycat ;
 put 'here is some sample data' ;
run ;

data stuff ;
 length buffer $ 20 ;
 infile dummycat ;
 input @1 buffer $20. ;
run ;

proc print; run ;

8

To demonstrate how named pipes can be
implemented using SAS software, consider this
example supplied in an earlier version of SAS Online
Doc. The computer transmitting the data would run
the following program.

The receiving computer, which is the same computer
in this example, runs the following program.

If you have trouble making this example work, try
increasing the retry value or try starting the receiving
program first. To use this example across a
network, replace the period in the Filename
statements on the receiving computer with either the
network name or IP address of the transmitting
computer.

When the author revisited this example using SAS
Release 9.1.3 on a Windows XP laptop, the
receiving SAS session did not print the results until
the transmitting SAS session was terminated.

Sending data from one SAS session to another on
the same computer may be viewed as a curiosity.
However, when the technique is applied across a
network, it can solve real problems, such the lack of
SAS/CONNECT software.

Another problem that this technique can solve is how
to read data into a second SAS session when only
the computer running the first session has the
required SAS/ACCESS software. For non-SAS
programs that support named pipes, this technique
can be used to allow SAS to read data from that
program.

A practical example of using unnamed pipes to
determine which SAS V9 programs are installed can
be found at the following URL:

http://support.sas.com/ctx/samples/index.jsp?sid=1732

Reading Data from Serial Communication Ports

If the ability to read data from FTP and web pages
using SAS seems fantastic, consider that SAS can
also read data from (and write data to) other
computers using an RS-232 serial communication
ports. For most personal computer users, that would
be the 25 pin or 9 pin port that is used to connect
external modems and palm-size personal
organizers.

Given the inroads of USB devices, RS-232 serial
interfaces are probably more useful to the users of
laboratory and service equipment who need a way to
automatically record test results. Serial
communication ports are also valuable when it is
necessary to interface SAS with older computers
whose operating system or disk file structure make
difficult, if not impossible to obtain the data they
contain in any other manner.

The details for reading data from serial
communication ports can be found in the SAS
OnlineDoc. The relevant section can be found by
selecting -> Base SAS Software -> Host Specific
Information -> Microsoft Windows Environment ->
Getting Started -> Using External Files -> Reading
Data from the Communications Port.

In order for serial communication to work, it is
necessary match the port setting of the SAS client
computer with the other computer with which one

/* Creates a pipe called WOMEN, */
/* acting as a server. The */
/* server waits 30 */
/* seconds for a client to */
/* connect. */

filename women namepipe
 '\\.\pipe\women'
 server retry=30;

/* This code writes three */
/* records into the named pipe */
/* called WOMEN. */

data class;
 input name $ sex $ age;
 file women;
 if upcase(sex)='F' then
 put name age;
 cards;
MOORE M 15
JOHNSON F 16
DALY F 14
ROBERTS M 14
PARKER F 13
;

/* Creates a pipe called WOMEN, */
/* acting as a client. The */
/* client waits 30 seconds for a */
/* server to connect. */

filename in namepipe
'\\.\pipe\women' client
 retry=30;
data female;
 infile in;
 input name $ age;
proc print;
run;

http://support.sas.com/ctx/samples/index.jsp?sid=1732

9

wishes to connect. For a Microsoft Windows
computer, the ports are set through the Control
Panel.

The serial communications port is associated with
SAS using a FILENAME statement. The syntax is:

FILENAME fileref COMMPORT “port:” ;

The following program, taken from the OnlineDoc
section cited, reads in data, byte by byte until an end-
of-file (hex ‘1a’x) is encountered:

nor

One last tip regarding reading data from serial
communication ports is that it is often useful to
visually examine the data stream before writing the
SAS program to receive and process it.

One way to review the byte stream being sent is to
use a terminal program such as Hyper Terminal,
supplied with Microsoft Windows. A second way to
capture the byte stream for review is to pipe the
communication port to a file and then use a hex
editor to examine the captured byte stream.

SAS/ACCESS LIBNAME Engines

In the preceding sections, all of the techniques
offered involve making data not stored as a flat text
file appear to SAS as if it were actually in text file
format. If one reviews the syntax used in the
previous examples, each program begins with a
FILENAME statement.

However, if one takes an expansive view of the title
of this paper, one of the most common sources of
program input not stored as a flat text file is data
stored in a database management system (DBMS).
SAS users who can read text files and SAS data sets
with confidence sometimes lose their confidence
when they must get data from a DBMS.
One of the more useful features introduced with the
Nashville release of SAS software (Versions 7 & 8) is
the introduction of the LIBNAME access engines. If
you recall from the earlier sections, we can specify
that a FILENAME statement points to something
other than a flat text file by the use of key words
such as FTP and URL.

Similarly, we can specify that a LIBNAME statement
points to something other than a SAS data set or

view by the use of key words such as ODBC or
ORACLE. Such a LIBNAME statement tells SAS
that the data is already stored as columns and rows
and to use specified SAS/ACCESS to make the
DBMS appear as if it were a SAS data set.

The general syntax for using the SAS/ACCESS
LIBNAME engines is:

LIBNAME libref SAS/ACCESS-engine-name
<SAS/ACCESS-engine-connection-options>
<SAS/ACCESS-engine-LIBNAME-options>;

The details for reading data from DBMSs using the
SAS/ACCESS LIBNAME engines can be found in
the SAS OnlineDoc. The relevant section can be
found by selecting -> Other SAS Software ->
SAS/ACCESS Software. Each version of
SAS/ACCESS has its own chapter and lists the
options applicable to that DBMS.

Some SAS sites do not license any SAS/ACCESS
software products. Also, the availability of
SAS/ACCESS for specific DBMS products varies by
platform. Last, for some of the common DBMSs, a
full discussion of the various options could supply
enough content for another SAS conference paper.
So a “follow-along” example is not provided for this
section.

However, to give a flavor of how SAS/ACCESS
LIBNAME engines are used, the following example
was culled from a program used to access data from
Oracle.

Since SAS/ACCESS for Oracle at this site is only
licensed and installed on a Windows SAS Server,
the preceding code is either submitted from the
console of the Windows SAS Server or from a
desktop instance of SAS via SAS/CONNECT.

Another variation of this technique is to define a libref
to a desktop instance of SAS using a remote engine.
A SAS/CONNECT session between the Windows
SAS Server and the desktop instance of SAS must
be started before submitting a libname statement
with the follow syntax.

data acquire;
 infile test lrecl=1 recfm=f
 unbuffered;
 input i $;
 if i='1a'x then stop;
run;

libname ora_prod oracle user=userid
 password=password path=”@path”
 schema=schema ;

libname ora_prod rengine=oracle
 server=server roptions=
 “user=user password=password
 path=’@path’ schema=schema” ;

10

One important caveat: If you are using a
SAS/ACCESS LIBNAME remote engine to read the
schema used for an Enterprise Reporting System
(ERP) with hundreds or thousands of tables and you
accidentally double-click on the SAS Explorer icon
for the libref (ora_prod in this example), you could be
in for a lengthy wait for the screen to refresh. This
difficulty may have been fixed in later releases of
SAS.

The SAS/ACCESS LIBNAME engines offer some
attractive features over alternative DBMS access
methods. The LIBNAME engine makes all of the
tables in the schema instantly available. By contrast,
SAS/ACCESS views only define a single table at a
time.

When compared to PROC SQL Pass-Thru, the
SAS/ACCESS LIBNAME saves one the trouble of
learning and using a different dialect of SQL tailored
to the DBMS being queried. Further, once the libref
has been defined, ordinary DATA step code can be
used to access the DBMS data. In most situations,
SAS performs the same optimization that previously
required the use of pass-thru coding.

The IMPORT, DBF, and DIF procedures can be
good tools to convert files from Microsoft Access
and Excel into SAS data sets. However, the SAS
data set from converted data does not change when
the source data changes. By contrast, the LIBNAME
Engine provides an updated view when the source
data changes.

CONCLUSION

The author hopes this survey of SAS tools to read
data in formats other than flat text files will increase
the reader’s appreciation of beauty and flexibility of
SAS software. He also hopes that he has helped to
demystify the various access methods that have
been covered.

One last tip: This paper directs the reader to the
SAS OnlineDoc for details about the subjects
covered. However, OnlineDoc may not be installed
at every site. Fortunately, free access to SAS
OnlineDoc is available on the World-Wide Web.

http://support.sas.com/documentation/index.html

BIBLIOGRAPHY

Ward, David L., “You Can Do THAT with SAS Software?
Using the socket access method to unite SAS with
the Internet,” Proceedings of the 2000 NorthEast SAS
User Conference, 2000. 405-11

ACKNOWLEDGEMENTS

SAS, SAS/ACCESS, SAS/CONNECT, SAS/IntrNet
and OnlineDoc are registered trademarks of
SAS Institute Inc. Microsoft, Access, Excel, and
Windows are registered trademarks of the Microsoft
Corporation. Oracle is a registered trademark of
Oracle Corporation.

The author would like to thank the Hartford Area
SAS User Group Steering Committee, which
encouraged him to prepare this paper. Special
thanks go to Robert Krajcik, Charles Patridge, and
Peter Prause.

Please note that the code supplied in this paper is
designed only to illustrate the concepts being
discussed and may need to be modified to work in
other applications. The author of this paper does not
support modified code.

CONTACT INFORMATION

The author may be contacted as follows:

Michael L. Davis
533 Tennis Avenue
Ambler, PA 19002
E-Mail: Michael.Davis@alumni.duke.edu

http://support.sas.com/documentation/index.html
mailto:Michael.Davis@alumni.duke.edu

