ROUND PEGS INTO SQUARE HOLES:
DATA WAREHOUSES FOR THE HARDWARE IMPAIRED

Michael Davis, Bassett Consulting Services, Inc., North Haven, Connecticut

Abstract

One of the dirty secrets of most data warehouse
projects is that they require vast amounts of disk
drive space and robust computers for successful
implementation. Unfortunately, not every
organization that lusts for a comprehensive data
warehouse can finance the tab for the hardware that
may be required to create the warehouse of their
vision.

Bassett Consulting Services has helped two clients
make better use of limited computing resources
through a two step approach. First, an active data
dictionary permits “point and click” selection,
renaming, joining, and sub-setting of data, even
when some of the elements reside on tape
cartridges or in hierarchical files.

Then “code engines” create SAS code on the fly to
extract the requested data from their actual physical
locations and transform the data into SAS data sets.
These data sets even contain variable labels and
formats, courtesy of the data dictionary, and are
ready for further analytical processing.

Introduction

When Bassett first began creating SAS/AF® FRAME
applications, our custom was to incorporate SAS
data step program code through SCL SUBMIT
blocks, which were compiled along with the rest of
the FRAME catalog entries. We became
dissatisfied with this approach for several reasons.

First, our clients were asking for “point and click”
selection of variables. Within the programming
structures that we used, it was not possible to
comply with their requests without custom
programming for each new data source.
Compounding the problem was the realization that
the data steps incorporated into our applications
involved much repetitive code. Bassett wanted to
employ an approach that would facilitate the
adoption of object-orient programming techniques.

Second, it seemed that the SAS System'’s best
features for developing “point and click” interfaces
required that the data to be in a SAS data set or
relational database management system (RDBMS)
and stored on disk. Unfortunately, our clients could
not afford to devote the disk space necessary to
permanently store their data warehouses on disk.

Third, looking towards the future, Bassett wanted to
position the applications it developed so that when
Version 7 is released, SAS variable names up to 32
characters long can be accommodated without re-
coding and recompiling. Similarly, when it was
necessary to create time-series data sets, we
wanted to be able to look-up a five character
variable prefix easily. The data dictionary approach
seemed a good solution.

Fourth, it was clear that no matter how well any data
warehouse might be designed, there would always
be some essential information not catalogued in the
data warehouse. Thus a data consolidation
structure should be created that would allow our
clients to integrate data from SAS data sets,
RDBMSs, and flat-files stored on disk or tape into
tables for subsequent analysis and reporting.

This was the impetus for developing the Meta-
Master[utilities and the Data Integratord
interfaces. The Meta-Master utilities consist of a
data dictionary and SAS/AF applications designed
to populate the dictionary, maintain the dictionary,
and to define objects called variable lists.

Figure 1 on the following page shows the
relationship between Data Integrator and Meta-
Master. Underneath the user interface layer of Data
Integrator are the Meta-Master data dictionary, the
Meta-Master utilities, and the Data Integrator code
engines. The data dictionary is where the details for
each data element are stored. The Meta-Master
utilities are used to automatically populate the data
dictionary and to maintain it.

The core of Data Integrator is composed of “code
engines”. These engines write SAS code to extract,
sort, combine, and manipulate data as specified by
lists called “job streams”. These job streams are
specified to through Data Integrator’s “point and
click” interface, made possible by the Meta-Master
data dictionary.

To better understand how Meta-Master and Data
Integrator work, let's examine how variable lists and
job streams are defined.

SAS/AF FRAME Interface

Data Dictionary

Meta-Master Utilities

Code Engines

Figure 1
Variable Lists

For the Meta-Master data dictionary and utilities to
properly function, each data element must have a
unique identification. Meta-Master uses the SAS
System two-level convention (<libref> .<member>)
to specify to which table data element (variable)
belongs. This is illustrated in Figure 2. Since the
way in which Meta-Master employs this form of
categorization has some unusual features. Let us
look at these features.

_—

Data Dictionary

Figure 2

SAS users may be already familiar with the term
libref. A libref is an alias which tells the SAS
System the physical location of the library where it
can find a specified data set member. However,
since the Data Integrator system is designed to
reference flat-files in a manner that is largely
transparent to its users, Meta-Master extends the
definition of libref to include a single flat-file or
related series of flat-files.

As an example, let us suppose that the Meta-Master
routines were to be employed by a health insurer.
We might have a series of patient claims data sets,

one for each month. Rather than having to
redundantly define the data elements in the various
claims tables for each month, we can use a single
libref (and table) to represent a typical month.
Then, we merely have to tell Data Integrator for
which month (and year) we desire our data.

Our use of term “table” is similar to the SAS data set
member. We decided to refer to data set members
as tables for two reasons. First, our definition of
tables should be viewed as logical or symbolic,
while SAS data sets members are but one form of
physical representation. Second, we wanted to
reserve the possibility that we might extend the
Meta-Master utilities in the future to allow multiple
tables to point back to a single SAS data set, as is
currently permitted with flat-files.

The term “variable” refers to a single data element
or SAS variable. The combination of libref, table,
and variable points to a unique data element in our
system of categorization. However, during testing
of the Meta-Master prototype on a rather large table
with several thousand variables, it was decided to
provide two additional means to sub-categorize
variables within a table.

A variable “category” classifies similar variables for
ease of selection. Where variables are
distinguished only by the time period each variable
represents or its position in a series, an “index
value” is assigned to it in the data dictionary. Itis
important to note that the use of categories and
index values in the Meta-Master system is optional
and that categories and index values are only used
to subset the number of variables shown for a table
to speed selections.

Variable List Structure

The heart of the variable list is a list of the variables
to be included in a particular job step. When a
variable list is created, it is stored in a SAS catalog
as an SLIST entry. When a variable list is created,
the person creating the list is encouraged to supply
a narrative description to be stored with the SLIST
catalog entry. The structure of the variable list is
illustrated in Figure 3.

Although all of the code engines created for the
Data Integrator thus far handle only one libref and
table per variable list, Meta-Master stores the libref
and table for each variable in the event that it
becomes desirable to relax this restriction in the
future.

VARIABLE LIST (SLIST CATALOG ENTRY)

Figure 3
Other information is stored along with the list of
variables for those job steps that may require that
information. These pieces of information are used
to set SAS data set options.

For example, if a job step requires that some
incoming variables be renamed to prevent
“collisions”, a list of original and renamed variables
can be stored in the variable list. Variables that are
not required for the current step can be dropped. If
WHERE processing is required, it can be applied to
only the data sets that require it and before the
current observation is brought into the job step.

Variable lists are managed by the Meta-Master
utilities and routines. These list are referenced by
the Data Integrator application, which invokes
SAS/AF FRAME interfaces and code engines
written in SCL (Screen Control Language). Data
Integrator uses Job Stream lists to combine these
elements and accomplish data extraction and
manipulation.

Job Streams Lists

Each job stream list consists of at least one step and
can have as many steps as desired. Job streams
are stored as nested lists, in job step sequence,
within a SLIST catalog entry. The structure of a
typical job streams is illustrated in Figure 4.

Data Integrator processes a job stream one step at a
time. The type of step is specified by the list name
under which the job step was stored. At the time
this paper was prepared, Bassett had created code
engines to write SAS statements and other types of
code for the following types of job steps:

* INFILE

« SET

« MERGE

« SORT

« TEMPLATE
« COPY

« DOWNLOAD (to spreadsheet)

JOB STREAM LIST (SLIST CATALOG ENTRY)

Figure 4

Some of the code engines execute on the desktop
computer on which Data Integrator runs. Other
code engines take advantage of the SAS System’s
ability to distribute program logic and submit code to
be executed on a remote computer, such as an
MVS mainframe.

What do the different engines do? The INFILE
engine writes a data step to extract a list of
variables from a disk or tape flat-file. The SET
engine brings in one or more SAS data sets for sub-
setting and transformation. The MERGE engine
brings in two or more data sets and combines them
using BY variables as the merge key.

The SORT engine does what one expects. It sorts a
single SAS data set. However, one can use this
engine to rename or drop variables and to subset
the observations copied to the output data set. The
output data set need not be the input data set.

The TEMPLATE engine was developed to
accommodate those situations where complex data
step logic was required. Rather than develop a
convoluted menu structure to handle all potential
situations, the user keys a program template. For
some applications, the template is inserted exactly
as keyed. However, the TEMPLATE engine shines
when Data Integrator uses the data dictionary to “fill
in the blanks”. The user merely keys in the word
INPUT on its own line and lists the variables to be

included in the data step. Data Integrator looks up
the variable offsets and informats required to fill out
the INPUT statement. Thus a piece of program
code that looks like this:

INPUT
name
address
city
state
zip

;
is automatically translated to:

LENGTH
name $ 20
address $ 25
city $ 20
state $ 2
zip $9
;

INPUT
@00001 name $char20.
@00021 address $char2s.
@00046 city $char20.
@00066 state $char2.

@00068 zip $char9.
)
FORMAT
name $20.
address $25.
city $20.
state $ 2.
zip $ 9.
)
LABEL
name= "Customer Name"
address= "Street Address"
city= "City"
state= "State"
zip= "Zip Code"

H

As shown in the preceding example, Data Integrator
supplies LENGTH, FORMAT, and LABEL
statements, using information stored in the data
dictionary.

The COPY and DOWNLOAD engines were
developed for a client which routinely stores needed
data on an MVS mainframe. After using Data
Integrator to create and remotely submit a MVS
batch job to extract the data, the COPY engine
submits a remote SAS program to copy the extract
data from tape to disk.

Once the data has been copied to disk, the
DOWNLOAD engine downloads the data to the
desktop computer. Then the SAS/ACCESS”
Interface to PC File Formats converts the
downloaded data to a Microsoft Excel .XLS
spreadsheet file.

Using the same technology, other data step
processing or procedures can be accommodated.
Further, jobs to be remotely submitted to any
platform supported by the SAS System, including
operating system and utility program statements,
can be cloned from existing engines.

Additional Job Step Parameters

What kinds of additional information do the code
engines require? It depends on the code engine. As
an example, let us consider the SET code engine
when the job is to be both created and run on the
desktop platform. Five items must be specified:

e output libref

e output member
e drop list

* |F clauses

« variable lists

The output libref and output member are inserted
into the DATA statement created by the SET code
engine. The drop list allows variables drawn from
input SAS data sets only for use by a sub-setting IF
statement to be dropped at the completion of the
data step.

A SET job step may contain more than one variable
list since a SET statement can specify more than
one SAS data set to be incorporated into a data
step. Data Integrator loops through all the
requested SAS data sets as it builds the SET
statement. The data set options specified within
each variable list are inserted in the SET statement
after SAS each data set.

Data Dictionary Features

One feature of the Meta-Master Data Dictionary is
the ability to store the data type for each element.
Data Type can assume the following values:

e data - SAS data set
e view - SAS view

o flat - disk flat file

* tape - tape flat-file

Libref, Table and Variable Name have been
discussed previously. Variable Type can be either
character or numeric. Label is a forty character
variable which contains the SAS variable label.

Transformation is a unique feature of the Meta-
Master Data Dictionary. For example, a tape data
set might have a transaction date, representing a
Julian date, that is stored as a packed decimal. In
our applications, we want to use it as a SAS date
value. How can we resolve this conflict?

When the code engines used to extract data are
run, they inspect the value of the Tranform(ation)
data dictionary field. If it is not empty, Data
Integrator creates an assignment statement which
incorporates the transformation. In our example, the
field on the tape might be read using the PD3.
Informat. The appropriate transformation would be

DATEJUL (trandate)

and Data Integrator would build the following
assignment statement in the created data step:

trandate= DATEJUL (trandata) ;

While transformations were incorporated into Meta-
Master for the purpose just described, they can be
used to solve other problems. These uses include
summing variables across an observation and
counting observations either conditionally or
unconditionally.

To illustrate the creation of a true/false variable, if
we had entered a transform for a numeric variable,
testco, as

INPUT(UPCASE(company),BASSETT)
where company is a character value containing the
names of companies, testco would be true when

company contained the word “BASSETT" .

The key thing to remember about transformations is
that once they are entered into the data dictionary,

Data Integrator’s code engines become smart
enough to remember the desired processing logic
whenever that SAS variable is selected.

With respect to the other fields shown on the screen
shown in Figure 6, the Informat, Format, and Length
fields are familiar to SAS users and inherit their
features. Offset is the starting position of the field to
be read to create the SAS variable. It is required
when reading data from a tape or disk flat-file.

Autoloader

The Meta-Master utilities would be far less useful if
it were necessary to key in the dictionary

information by hand. As observed in a preceding
discussion, some of our clients routinely work with
tables containing thousands of variables.
Fortunately, one of the Meta-Master utilities is a
FRAME application that automatically loads the data
dictionary for a new table.

How is this done? For almost any table we might
insert into the data dictionary, we have one of three
items. We might have a copy of the data set or one
with a similar structure. When this is not the case,
we almost surely have a SAS program with an
INPUT statement coded to read the raw data.

Last, if the raw data was created by a production
program, we might have access to a COBOL record
description for the raw data file. In this case, we
employ the COB2SAS utilities available at no cost
from SAS Institute’s Technical Support department.
COB2SAS is used to translate the record description
into SAS INPUT and LABEL statements, which are
fed to the Autoloader.

How does the Autoloader work? In all cases,
Meta-Master reads the SAS System dictionary
views to determine the table layout and to populate
the Meta-Master data dictionary. In the case where
a table is drawn from a SAS data set or view, all of
the required information can be obtained from the
SAS System dictionary views.

In the case of tape and disk flat-files, two additional
items must be obtained. These two items are the
variable offsets and informats. This information is
obtained from parsing the INPUT statement.

To use the Autoloader to define a table created from
a flat-file, the user enters the name of the file where
the SAS program containing an INPUT statement
for the file is located. An editor window is opened
and the file is loaded. The user deletes the DATA
and INPUT statements since the Autoloader

supplies them. Other statements, such as LABEL,
FORMAT, INFORMAT, and LENGTH statements
are left in the editor.

In addition to creating the SAS system dictionary
views and parsing the INPUT statement for variable
offsets and informats, the Autoloader identifies
appropiate variable formats based on the informats
and variable lengths.

Building Job Streams

The user clicks on a radio box station to select the
next job step to be built. Clicking on the REVIEW
job stream station prints a detailed list of the job
stream under construction to the SAS log. If the
wrong job step is selected, clicking on the UNDO
last step button backs out the last step entered.

To keep users from wondering if the job step they
just entered was accepted, a “stack” displays the job
steps that have been previously entered.

Running Job Streams

One feature of this interface is the librefs and
filerefs associated with the selected job stream are
verified before the job stream is actually executed.
If a libref or fileref is unassigned, a pop-up window
allows the user to make the assignment or cancel
execution before any time is wasted running the job
stream.

Custom Interface for Remote MVS Batch Jobs

For one client, Bassett created a custom interface
and code engines to meet their requirements. The
data they wished to extract was stored in tape
cartridges on an MVS mainframe. The data sets
were very large, typically occupying 50 or more IBM
3480 tape cartridges. Their analysts needed the
ability to extract data for a single client and
download it for analysis with a Microsoft Excel
spreadsheet.

When the client was shown the a prototype Data
Integrator interface that allowed them to define and
store job stream lists, their reaction was that the
interface was needlessly complex and confusing.
To satisfy their concern, we modified the Data
Integrator interface to build a disposable single step
job stream list. Thus users at this site only have to
create and manage variable lists.

The INFILE code engine was modified to submit the
extraction program in batch mode, along with the
required MVS JCL. To minimize both contention for

the tape data sets and execution time, the code
engine also inserts a SyncSort” extraction program
ahead of the SAS data step.

As part of this customized version of Data
Integrator, the client was furnished with a utility
FRAME application that catalogs which clients are
stored on each tape cartridge of selected tape flat-
files. This information is used by the SyncSort
extraction program so that only the cartridges
containing the selected clients information are
mounted and read.

Conclusion

The Data Integrator and Meta-Master represent an
object-oriented approach using SAS System
software to rapidly develop custom data extraction
and manipulation applications. These applications
may be used to populate data warehouses or for
other purposes.

Since the analysis data does not need to be retained
on disk storage, this approach should be attractive
to SAS System users who may be working under
hardware or budget constraints yet do not want to
sacrifice the “point and click” interfaces possible
using SAS Institute software.

An ancillary benefit of this approach is that a data
dictionary is created. This dictionary is a good tool
for managing a data warehouse. Because the
dictionary is stored as a SAS data set, it is relatively
simple to interface it to other SAS applications.

Acknowledgments

SAS, SAS/ACCESS, SAS/AF, and SAS/CONNECT
are registered trademarks of SAS Institute, Cary
NC

SyncSort is a registered trademark of Syncsort Inc.,
Woodcliff Lake NJ

Data Integrator, Meta-Master, and Data Builder are
trademarks of Bassett Consulting Services, Inc.

The author may be contacted at:

Bassett Consulting Services, Inc.

10 Pleasant Drive

North Haven CT 06473-3712
Telephone: (203) 562-0640

Fax: (203) 498-1414

Internet: 0002395748@mcimail.com

	Main TOC

