
FRAME Your Mainframe Batch Applications

Michael Davis, Bassett Consulting Services, Inc.

ABSTRACT

SAS® developers often prefer to design applications that
run on desktop computers using client-server
technology. However, when the applications must read
tape data sets too large to warehouse on a disk-based
server, some batch processing is usually required.
Fortunately, it is unnecessary to forego friendly and
flexible graphical user interfaces (GUIs) when portions
of an application must be run in batch.

Bassett Consulting Services, Inc. has developed an
application for a large financial services client that
marries a desktop GUI to sophisticated batch
processing. OS/2® and Microsoft® Windows client
computers, running the SAS System, write the MVS
batch jobs.

Selections are made from graphical screens coded as
SAS/AF® FRAME entries. The tape volume (VOLSER)
directories and program catalogs are maintained on a file
server where they can be shared by client computers.
The application consults the VOLSER directory so that
only the needed tapes are mounted.

As a result the number of unnecessary tape mounts is
reduced by as much as 90 percent. After the batch job
is written, it is automatically uploaded and remotely
submitted to the host mainframe. The result is an
application that even non-programmers find fun to use.

INTRODUCTION:
Welcome to the Real World

Experienced users often observe that there is a
considerable difference between using computers
depicted by magazines and marketing literature and
actual use. Hence, it may be helpful to describe some
of the tribulations faced by typical computer users to
better appreciate the value of the application to be
described. This application is known as Data Builder™.

One popular belief is that mainframe computers are
obsolete and will be momentarily supplanted by

desktop computers networked to departmental servers
running UNIX and other operating systems. The
metaphor that often accompanies this belief is instant
answers to computer queries supplied by online
processing.

While the trend may be accurate, many situations
remain where it is not economical to store the massive
amounts of information required on magnetic disk
drives. In near future, optical storage and other
technologies may make it feasible to direct access to
nearly all huge databases. However, in 1996, many
organizations elect to continue storing their large
databases on magnetic tape cartridges.

These cartridges are managed in robotic "silos" and are
often connected to large mainframe computer systems,
such as those manufactured by IBM Corporation. To
increase the productivity of these very expensive
resources, most mainframe sites insist that tape
cartridges be read through programs submitted for
batch-mode processing. Hence, techniques that rely on
online access will not work well in these situations.

When computing equipment is shown on television or
in a magazine, the increasingly popular view is to display
a desktop computer with a graphical user interface
(GUI) on the screen. However, as long-time mainframe
computer users are aware, mainframe terminal
emulators are usually hobbled by the 3270 character-
based interface. Also, many 3270 terminal emulators
lack support for a pointing device such as a mouse or
trackball.

In the ideal environment, computer users have
adequate time and training to master their computer
tools and their work is interesting and challenging. In
the real world, they may have assumed the work that
was done by other persons before their organization
was "right-sized." Often the opportunity for formal
training must be foregone to meet deadlines that seem
to arrive ever sooner.

2

Why SAS ? Client-Server Computing

One reason to use the SAS System in an environment
similar to the one that we described is its strong support
of client-server computing. In the context of this
discussion, we are referring to the SAS System's ability
assign each segment of a computer application to the
computer platform best able to undertake it. For our
purposes, a platform represents any combination of
computer hardware and operating systems that are
capable of executing the SAS System.

For example, we might start a SAS session on a desktop
computer running the SAS system under OS/2 or
Microsoft® Windows. Our data resides on tape
cartridges stored in a silo connected to a remote
mainframe. So we use SAS/CONNECT® to start a
second SAS session on the mainframe and transfer a SAS
program to be executed as batch submission on the
mainframe.

After the mainframe SAS program has executed our
remotely submitted program, we might wish to further
analyze and graph the extracted information on a
departmental server that runs SAS under UNIX. So we
again use SAS/CONNECT to transfer the SAS data set
from the remote mainframe to departmental server.

Why did we go to this trouble? Each computer was the
best choice for the tasks that we directed to it. The
mainframe had a direct connection to required tape
cartridges and the speed necessary to process the large
volume of records to be read from them. Also,
mainframe is able to share resources among large
numbers of potential users better than the other two
platforms.

The desktop computer had an attractive and flexible
GUI. Also the marginal costs of an idle desktop
computer are considerably less than the other two
platforms, making it an ideal choice for use as our often
idle "console."

The departmental server represents a good compromise
between mainframe and desktop computers when the
task load is too high to be quickly processed on a
desktop computer. Also, "downsizing" mainframe tasks
to departmental servers also saves expensive mainframe
cycles.

Why SAS? Portability

Information systems departments frequently ask,
"Should our organization stay with our current platforms
or switch to others?". An important consideration that
ought not be overlooked when considering this question
is whether the current application software will run
satisfactorily on the new platform. Otherwise, an
investment in purchasing or coding new application
software will be required. When the known and
hidden costs associated with acquiring new application
software are summed, they are often largest element of
the computing budget.

Bassett Consulting Services develops applications
exclusively with the SAS System. A major reason for
this policy is because we believe that the SAS System's
portability across platforms is unmatched by any other
suite of application development tools that we could
employ. This protects the investment that our clients
make when they retain our services to develop
applications for them, should they decide to migrate to
another platform.

For example, the client that had commissioned the Data
Builder application recently decided that they will
migrate from OS/2 to Microsoft Windows. It was a
pleasure to tell them that the SAS/AF FRAME entries
could be executed on any of the platforms they were
considering without modification! Ironically, major
portions of the application had been developed under
Microsoft Windows Version 3.1 and are maintained
under Microsoft Windows 95.

Further, since the SAS catalogs for OS/2, Windows 3.1,
Windows 95, and Windows NT share the same SAS
catalog format, only one set of application catalogs need
be maintained to support users operating Data Builder
from any of these desktop platforms. Hence, it is not
necessary for all users to be on the same platform to
use a single catalog to store the Data Builder
application.

This client is also seeking to migrate some of their SAS
reporting from a mainframe running MVS to a
departmental UNIX server. We are confident that only
minor changes to Data Builder will be required to
transfer the output files to the server.

3

One lesson learned during the development of the Data
Builder application is that current laptop computers are
usually restricted to 800 x 600 pixel resolution. This
restriction stems from the LCD panels used for their
displays. When we began demonstrating Data Builder
to local SAS user groups, problems were encountered
displaying FRAME entry screens designed for 1024 x 768
resolution. Since the use of laptop computers as one's
primary computer is increasing, we started designing
screens to work satisfactorily at 800 x 600 resolution.

Design Goals

When Bassett Consulting Services began developing the
Data Builder application, several goals were adopted to
guide the development process. We wished to follow
sound development practices and to increase client
satisfaction with the completed application.

A primary goal was to create an online application that
would allow risk analysts to easily extract SAS
observations from the raw data stored on tape cartridges
and merge the extracts by key values within the same
SAS session. The application was to be attractive and
easy to use, providing feedback to the user at
appropriate points during the screen dialog.

We also sought to make the application so reliable that
users could count on the batch jobs submitted by Data
Builder running on the first attempt. Besides saving
computer resources and preventing user frustration, a
reliable application would encourage users to submit
jobs for overnight execution, thus conserving mainframe
resources during peak daytime hours.

Data Builder was engineered to reduce the number of
tape cartridges to be read. In addition to shortening
program execution time, this would free up the tape
data sets for use by other users sooner, reducing
contention.

Another goal that drove the design process was the
desire to make the application easy to maintain and
change. We sought to reduce the number of changes
that would require changing the application's code to as
small a set as possible. Last, the client had already
created much of the required SAS code. Hence, Data
Builder was designed to integrate this code into the

submitted jobs and to allow the client to modify these
modules without having to recompile the Data Builder
FRAME entries.

SCL Lists

After coding an SAS/AF application for another client,
we concluded that using CALL DISPLAY to pass
parameters among catalog entries was often an
unsatisfactory solution. Use of the CALL DISPLAY
leaves the calling catalog entries open. If several
catalog entries were still open, the closing of the final
entry starts a cascade of closing entries that some users
found disconcerting. Further, matching the variable lists
of the calling entry and called entry was sometimes
difficult to coordinate, especially when the order in
which catalog entries were opened may vary.

To solve these problems, Bassett Consulting Services
began to use SCL lists. SCL lists were added to the SCL
(Screen Control Language) with Release 6.07 of the SAS
System. Similar in concept to arrays, SCL lists are
ordered collections of data. However, SCL lists have
additional flexibility that makes them ideal for passing
parameters among catalog entries.

Each item of an SCL list can contain a number, character
string, or the identifier for another list. A list may
simultaneously contain all three types of items. The
items can be referenced by their position or by name.
SCL lists can be placed in a global environment so that
any catalog entry may obtain or modify items. Stored in
memory, items in SCL lists can be accessed faster than
variables stored in a SAS data set. However, SCL lists
can also be stored and retrieved from SLIST catalog
entries between SAS sessions.

Because of these features, Bassett Consulting Services
decided that the Data Builder application would use
SCL lists to replace CALL DISPLAY statements for
parameter passing except where only a single FRAME
entry window would be opened on top of another. We
also decided to aggressively use SCL lists instead of SAS
data sets to store all manner of settings and selection
lists. By using SCL lists in this manner, we hoped that
Data Builder would become more object-oriented in
design and be easier to change and maintain.

4

The next section of this paper contains an abbreviated
description of the operation of the Data Builder
application. As noted in the abstract, Data Builder is a
SAS/AF FRAME application that extracts, merges, and
reports information extracted from tape cartridges read
by a mainframe computer running the SAS System
under the MVS operating system.

The cartridges contain information drawn from approved
credit applications, rejected credit applications, and
monthly files detailing the account balances and
performance. The heart of the Data Builder application
is a SAS data set which contains a table listing the clients
stored on each tape volume serial number (VOLSER).

Data Builder Main Menu

When a user starts the Data Builder application, a
screen similar to the one shown in Figure 1 appears.
Please note that all of the screen illustrations (Figure 1
through Figure 6) have been placed at the end of the
paper. These particular screens were captured while
Data Builder was running under Release 6.11 of the SAS
System on a personal computer running Microsoft
Windows 95. The user makes most selections either by
using a pointing device such as a mouse or by tabbing to
a selection and pressing the Enter key.

When the "Build Data Set" icon button is selected, the
user is presented with a succession of FRAME entry
screens on which are entered the parameters to be
used to extract and merge data elements from the tape
cartridges. The "Run Reports" icon button brings up a
menu of standard reports and allows the user to further
subset the data before running a report. The
"Maintenance Tasks" icon button brings up the menu
shown in Figure 6.

The first FRAME entry screen that appears after the
"Build Data Set" icon button is selected is shown in
Figure 2. In the box labeled "VOLSERS DIRECTORY
DATA AVAILABLE FOR MONTH/YEAR" appears latest
date for which applications are available. The range of
performance points (the account status "snapshot" as of
a particular date) also appears in this box. This
information is refreshed by Data Builder at start-up.

The box labeled "CLIENT" selects the customer group
menu displayed on the following screen. Breaking the

customer list into groups helps to make the selection
less intimidating. The box labeled "SAMPLE PERCENT"
allows the user to subset the data to be extracted and
processed for large customers. The user enters the
sample percentage desired in the provided fields.

The box labeled "SETTINGS SOURCE" selects the
parameter settings list to be used. Data Builder allows
users to retrieve settings, customize them, and save
them for reuse. These settings are kept in the global
SCL list during a Data Builder session. Between
sessions, they are stored as SLIST entries. The use of
SCL lists to manage settings helps eliminate the
nuisance of referring to notes and cuts repetitive keying.

The "DEPT" (department) list contains those settings
values on which the workgroup has standardized. This
list is stored on the departmental server. The "LOCAL"
list contains the settings preferred by the individual user
and is stored on the desktop computer. The
"PREVIOUS" list contains the settings used during the
last Data Builder session and is saved automatically after
each session. The "BUILT-IN" selection is obsolete and
not used.

The box labeled "JOB CLASS" selects whether the batch
job to extract data from the tape cartridges will be
submitted to run as soon as possible ("STANDARD"
setting) or deferred for overnight processing. The box
labeled "CUSTOM LIST ENTRY NAME" is partial
obscured by the SAS status bar. It is used to specify the
SLIST catalog entry to be opened when "CUSTOM" is
selected from the "CLIENT" box.

Selecting the "CANCEL" push-button returns the user to
the Data Builder Main Menu. The "CONTINUE" push-
button switches the user to the Data Selection screen
after cross-validating screen selections.

Whenever Data Builder detects a problem during cross-
validation, a small window pops up. The window title
tells the user what problem caused the window to pop-
up and a message line in the window suggests how to
correct the problem.

Data Selection

The Data Selection screen is shown in Figure 3.
Selecting the Core customer list on the previous screen

5

brings up the Customer Selection List shown in the box
labeled "CUSTNO1/CUSTNO2 LIST NAME." Each row
of this table represents a sub-list (an SCL list within an
SCL list) containing identifiers for each customer.

The client for which Data Builder was designed uses
two different identification schemes to associate a credit
account with a particular customer. The numbering
scheme to be used (Custno1 or Custno2) is selected in
the box in the upper-left corner of the screen labeled
"SELECT CUSTNO1 OR CUSTNO2 ?"

The Customer Identifier List box in the center of the
screen, labeled "CUSTNO1 OR CUSTNO2," is used to
view and edit customer identifier SCL lists. The push-
buttons to the right of the Customer Selection List
provides several functions that work in conjunction with
Customer Identifier List box.

The push-button labeled "NEW" clears the Customer
Identifier List. The push-button labeled "OPEN" loads
the selected customer identifier list into the Customer
Identifier List table. If the user prefers, a list can be
opened with a mouse by "double-clicking" on the
desired list in the Customer Selection List table.

If a customer identifier list is already loaded into the
Customer Identifier List table, a pop-up window
appears. It offers the user the choice of replacing the
existing SCL list with the new one or appending the
new list to the end of the existing SCL list. The ability
to append lists allows extraction of data for multiple
customers through a single extraction run.

Additional rows can be added to the Customer
Identifier List by pressing the "ADD" push-button.
Customer identifiers are eliminated by deleting the
contents of that identifier's row. Blank rows are
automatically deleted when the user saves the modified
Customer Identifier List to the Customer Selection List
by selected the "SAVE" or "SAVE AS" buttons.

Much care was invested in coding the features used to
manage the customer identifier lists. Unlike SAS data
sets, SCL lists cannot be viewed or edited except
through SCL code. An application developer who
employs SCL lists bears the added responsibility to
provide for any function that a user might need. Thus,

the "DELETE" push-button was added to allow a user to
remove a row from the Customer Selection List.

To prevent a user from accidentally deleting or
corrupting a customer identifier list, Data Builder was
engineered to take advantage of security features
available in a client-server environment. The SAS
catalogs, which contain the FRAME entries and shared
SCL lists, and the VOLSER table, are stored on the
departmental server. While all users may read from the
server, only designated users may also write to the
server.

Data Builder retrieves shared information from the
departmental server. However, any SCL lists written by
Data Builder, such as parameter settings and modified
customer identifier lists, are normally written to the disk
drive of the desktop computer. When the
departmental settings and lists need to be changed, a
user with write-privileges to the server performs the
update.

The three check boxes within the box labeled "TYPE OF
DATA ?" select the type(s) of data to be extracted.
When both approved applications and performance
records are checked, Data Builder selects only those
performance records that correspond to the selected
application records and performs a match-merge. Since
rejected applications cannot be matched with
performance data, rejected applications are appended
to the output data set when approved applications or
performance records are also selected.

The box labeled "DATE SELECTION" controls the date
selection range (month and year) used to filter accounts
by the date on which the account was opened. When
performance records are requested, the month and year
of the desired performance point is also entered.

Extra effort was invested in the coding of the "Date
Selection" box to make Data Builder easier to run.
While three character month abbreviations are used,
the program automatically converts months entered as 1
through 12 to the corresponding abbreviation. Similarly,
either the last two digits or all four digits of the year
may be entered.

6

Extensive cross-validation of the selections made on the
data selection screen help suppress obvious error that
would cause the batch extraction job to fail.

DSN Selection and TSO User ID Entry

Due to space limitations, the next screen is not
pictured. On this screen, various data set names
(DSNs) are entered. They point Data Builder to SAS
code to be included in the submitted batch job. If the
feature to which they refer is not to be used, "NULL" is
entered instead.

These DSNs point to the scoring models and optional
report modules that may need to be included. Because
these modules are not part of the compiled catalog
entries, the user may alter them at will to accommodate
any supplementary processing that might be desired.

Estimated Sample Size

After all of the selection parameters have been entered,
Data Builder extracts the observations from the VOLSER
table that match the type of data and the customer
identifiers selected. This information is used to fill in
the "ESTIMATED RECORDS TO BE EXTRACTED"
window shown in Figure 4.

The reason why the numbers are shown are estimates is
that there is no way to determine in advance how many
observations will be filtered by the selected date range.
Nevertheless, the information on this screen can help a
user determine whether the sample to be extracted
may be too large or small, or that no records will be
retrieved using the current selections.

If the user decides to try different selection parameters,
selecting the "GO BACK" push-button returns Data
Builder to the initial selection screen shown in Figure 2.
All the current selections are preserved so repetitive
entry is minimized. If the user selects the
"CONTINUE," the requested program is written to the
Preview Buffer Window.

Preview Buffer Window

Data Builder writes a complete MVS batch program
based upon the parameters selected and the
information extracted from the VOLSER table. The

completed program is displayed in browse mode in the
Preview Buffer Window. An example of this screen is
shown in Figure 5.

The batch program contains a JOB statement, followed
by separate job steps for each type of data to be
extracted. The extraction is performed by SyncSort™, a
third-party sort/merge/copy utility. SyncSort is used for
this function because it can extract and filter raw tape
records faster than SAS.

The next job step creates SAS data sets from the tape
extracts. The Data Builder generated SAS code subsets
the SAS data sets by the sampling percentage and re-
scores the applications when the external DSNs were
included. Last, the processed SAS data sets are merged
and/or concatentated into a single output SAS data set.

If the DSN for a report module is entered, an additional
job step containing the module is inserted. By including
the report as a separate job step, the output data set,
which takes the bulk of the execution time to process,
is protected in the event of a coding error. When this
step fails, it can be rerun by itself.

The user can scroll through the Preview Buffer Window
to examine the generated code. To submit the code
shown in the Preview Buffer Window, the End
command, which is usually assigned to the PF3 key, is
issued. This causes the contents of the Preview Buffer
to be saved to a file on the desktop computer and the
window to be cleared and closed.

If the EHLLAPI communication protocol is used to
establish the connection between the desktop
computer and the remote mainframe, the user starts up
their terminal emulator and signs on to TSO. Data
Builder issues the SIGNON command and establishes a
link between the two computers through
SAS/CONNECT.

Data Builder transfers the batch program from the
desktop computer to the remote mainframe. The batch
program is submitted for execution by copying the file
to the JES internal reader. After the batch program has
been submitted, Data Builder issues the SIGNOFF
command. After offering the opportunity to save the
current parameter settings and to submit another batch

7

job, Data Builder returns the user to the Data Builder
Main Menu.

Maintenance Menu

Figure 6 shows the Data Builder Maintenance Task
menu screen. Icon buttons start batch jobs to scan the
data cartridges created for each new month or quarter
in order to compile the list of the customer identifiers
on each cartridge. Other icon buttons cause the
compiled lists to be downloaded to the desktop
computer. There is also an icon button that deletes
obsolete or incorrect data for a performance point as
well as one that rolls-back the last update.

As noted earlier, there are no SAS procedures or Display
Manager to modify SCL lists. Hence, two of the icon
buttons handle SCL update tasks that may be
occasionally needed. The "Edit Parameters" icon button
changes the name of the catalogued procedure that
invokes SAS and the partitioned data set that contains
the external SAS code modules. By obtaining these
values from a SCL list, the need to edit and recompile
catalog entries when these values change is eliminated.
The "Copy List" icon button brings up a screen used to
copy a selected customer identifier list to another list.

Unlike an application that might be used nearly every
day, maintenance tasks are usually performed only
weekly or monthly. Sometimes the maintenance tasks
are performed by inexperienced persons. If the
maintenance tasks are not easy to run, all sorts of
problems may occur. Hence, much effort was taken to
make maintenance as easy to perform as the extraction
and merging of data from the tape cartridges.

CONCLUSION

Even though the Data Builder application has been used
by the client for over a year, Bassett Consulting Services
is working to further enhance it. Now that a production
UNIX departmental server is available, we are adding
the ability for Data Builder to transfer the output data
sets to it through a screen menu.

An even bigger change is also currently underway. The
original version of Data Builder was designed to work
with specific files and much of the SAS code is
embedded with the FRAME entries. A new version of
Data Builder, using the Meta-Master™ library that
contains an active data dictionary, is currently under
development. When it is completed, users will be able
to enter information about raw data sets from
maintenance screens.

This version of Data Builder will have the ability to
extract and merge information from SAS data sets and
views, and SAS/ACCESS® views to relational database
systems with information extracted from tape cartridges.
Data from any computer that can be reached through
SAS/CONNECT can be incorporated into the output SAS
data set.

Please direct questions or comments on this paper to:

Michael L. Davis
Vice President
Bassett Consulting Services, Inc.
10 Pleasant Drive
North Haven CT 06473-3712
Telephone: (203) 562-0640
E-Mail: Michael@bassettconsulting.com

ACKNOWLEDGEMENTS

SAS, SAS/ACCESS, SAS/AF, and SAS/CONNECT are
registered trademarks of SAS Institute Inc., Cary,
North Carolina. ® indicates USA registration.

IBM, JES, MVS, and OS/2 are trademarks of
International Business Machines Corporation

Microsoft is a registered trademark of Microsoft
Corporation, Redmond, Washington

SyncSort is a trademark of Syncsort Incorporated,
Woodcliff Lake, New Jersey

Data Builder and Meta-Master are trademarks of Bassett
Consulting Services, Inc., North Haven, Connecticut

8

Figure 1

Figure 2

9

Figure 3

Figure 4

10

Figure 5

Figure 6

